Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Photoinduced magneto-optical Kerr effect in a Pr_{0.7}Ca_{0.3}MnO₃ crystal.

A.V. Boris *1, N.N. Kovaleva¹, A. Tsvetkov², D. van der Marel², Y. Tomioka³, Y.Tokura⁴

- ¹ Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow district 142432, Russia
- Solid State Physics Laboratory, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- ³ Joint Research Center for Atom Technology, Tsukuba 305-0046, Japan
- Department of Applied Physics, University of Tokyo, Tokyo 113-0033, Japan and JR-CAT

The detailed magneto-optical Kerr effect and ellipsometry measurements on $Pr_{0.7}Ca_{0.3}MnO_3$ have been performed in the energy range of 0.7 - 4.2 eV. The temperature dependences of the magneto-optical Kerr rotation and ellipticity show noticeable effect below $T_N \sim 150$ K and a steep increase below $T_{CA} \sim 110$ K when the canted AF phase develops. It was found that the main feature at ~ 3.4 eV observed in both the diagonal and off-diagonal conductivity increases by about 25 % in the Kerr rotation after illumination by light of YAG laser (the second harmonic, $\lambda = 0.53 \mu m$) at low temperature (T = 30K) and becomes comparable with that measured on the fully polarized half-metallic $La_{0.7}Ca_{0.3}MnO_3$ crystal ($\theta_K \sim 0.5$ deg). The effect is discussed in terms of the collective photoindused switching behavior associated with the charge-ordering insulator-ferromagnetic metal instability in the manganites.

^{*}Max-Planck Institute für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany